Large-scale portfolio optimization using Pauli Correlation Encoding

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Portfolio optimization is a cornerstone of financial decision-making, traditionally relying on classical algorithms to balance risk and return. Recent advances in quantum computing offer a promising alternative, leveraging quantum algorithms to efficiently explore complex solution spaces and potentially outperform classical methods in high-dimensional settings. However, conventional quantum approaches typically assume a one-to-one correspondence between qubits and variables (e.g. financial assets), which severely limits the applicability of gate-based quantum systems due to current hardware constraints. As a result, only quantum annealing-like methods have been used in realistic scenarios. In this work, we show how a gate-based variational quantum algorithm can be applied to a real-world portfolio optimization problem by assigning multiple variables per qubit, using the Pauli Correlation Encoding algorithm. Specifically, we address a problem involving over 250 variables, where the market graph representing a real stock market is iteratively partitioned into sub-portfolios of highly correlated assets. This approach enables improved scalability compared to traditional variational methods and opens new possibilities for quantum-enhanced financial applications.

Article activity feed