In Silico Discovery of RIOK3 Inhibitors Against Pancreatic Ductal Adenocarcinoma Using Homology Modelling, Molecular Docking, Molecular Dynamics Simulations, ADMET Prediction, and MTT assay

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer strongly linked to RIO Kinase 3 (RIOK3), which promotes progression by stabilizing and phosphorylating Focal Adhesion Kinase (FAK). Advances in protein structure prediction, particularly AlphaFold2, have significantly enhanced our understanding of protein dynamics, aiding in the identification of potential inhibitors for targeted therapies. This study used structure-based virtual screening, molecular dynamics simulations, ADMET/toxicity prediction, and in vitro validation to identify potential inhibitors of RIOK3 for PDAC treatment. The 3D structure of RIOK3 was predicted using AlphaFold2 and docked with FDA-approved drugs via AutoDock Vina. Pharmacokinetic and pharmacodynamic properties were assessed with SwissADME, and in vitro validation was performed using MTT assays to assess cell viability and growth inhibition. Four top-scoring compounds were identified, with binding energies between − 11.3 and − 10.4 kcal/mol. Venetoclax showed the most stable complex with RIOK3, followed by Conivaptan and Irinotecan. Drospirenone showed weaker binding. Molecular dynamics simulations and MM/GBSA analysis supported the stability of these complexes. SwissADME and ProTox-II confirmed that the compounds met drug-likeness criteria but exhibited distinct pharmacokinetic and toxicity profiles. In vitro MTT assays showed concentration-dependent growth inhibition in PANC-1 cells, with Conivaptan having the lowest IC₅₀ value. This study identifies RIOK3 as a promising therapeutic target for PDAC, with Venetoclax, Conivaptan, Drospirenone, and Irinotecan as repurposable candidates for further research. Further studies should include biochemical assays, expanded cytotoxicity profiling in multiple PDAC cell lines, and in vivo evaluations to validate RIOK3-targeted therapies for PDAC treatment.

Article activity feed