Team Formation and Applications

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

A novel long-lived distributed problem, called Team Formation (TF), is introduced together with a message- and time-efficient randomized algorithm. The problem is defined over the asynchronous model with a complete communication graph, using bounded size messages, where a certain fraction of the nodes may experience a generalized, strictly stronger, version of initial failures. The goal of a TF algorithm is to assemble tokens injected by the environment, in a distributed manner, into teams of size σ, where σ is a parameter of the problem. The usefulness of TF is demonstrated by using it to derive efficient algorithms for many distributed problems. Specifically, we show that various (one-shot as well as long-lived) distributed problems reduce to TF. This includes well-known (and extensively studied) distributed problems such as several versions of leader election and threshold detection. For example, we are the first to break the linear message complexity bound for asynchronous implicit leader election. We also improve the time complexity of message-optimal algorithms for asynchronous explicit leader election. Other distributed problems that reduce to TF are new ones, including matching players in online gaming platforms, a generalization of gathering, constructing a perfect matching in an induced subgraph of the complete graph, and more. To complement our positive contribution, we establish a tight lower bound on the message complexity of TF algorithms.

Article activity feed