Tracing NAD⁺ metabolism uncovers adaptive coordination between host and microbiome during colitis

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Host-microbiota metabolic interactions critically regulate nicotinamide adenine dinucleotide (NAD+) homeostasis, and their disruption is increasingly linked to chronic diseases including inflammatory bowel disease (IBD). However, it remains unclear whether NAD+ dysregulation in IBD arises from impaired production, enhanced consumption, or both. Using multi-omics approaches and stable isotope-labeled NAD+ precursors administered via intravenous infusion in a murine model of dextran sulfate sodium (DSS)-induced colitis, we mapped tissue- and lumen-specific NAD+ metabolism under inflammatory stress. Our results reveal tissue-specific rewiring of NAD+ metabolism, with increased flux through the salvage pathway compensating for reduced de novo NAD+ synthesis from tryptophan. In parallel, microbial de novo NAD+ production was elevated, highlighting a cooperative host–microbiota response to inflammatory stress. These findings demonstrate differential regulation of NAD+ biosynthesis during acute colitis and underscore the dynamic interplay between host and microbial metabolism in maintaining NAD+ homeostasis under inflammatory conditions.

Article activity feed