Fast Gradient Methods for Data-Consistent Local Super-Resolution of Medical Images
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In this work, we propose a new paradigm of iterative model-based reconstruction algorithms for providing real-time solution for zooming-in and refining a region of interest in medical and clinical tomographic images. This algorithmic framework is tailored for a clinical need in medical imaging practice that after a reconstruction of the full tomographic image, the clinician may believe that some critical parts of the image are not clear enough, and may wish to see clearer these regions of interest. A naive approach (which is highly not recommended) would be to perform the global reconstruction of a higher resolution image, which has two major limitations: first, it is computationally inefficient, and second, the image regularization is still applied globally, which may over-smooth some local regions. Furthermore, if one wishes to fine-tune the regularization parameter for local parts, it would be computationally infeasible in practice for the case of using global reconstruction. Our new iterative approaches for such tasks are based on jointly utilizing the measurement information, efficient up-sampling/down-sampling across image spaces, and locally adjusted image prior for efficient and high-quality post-processing. The numerical results in low-dose X-ray CT image local zoom-in demonstrate the effectiveness of our approach.