DNA-Inspired Time Series Encoding: A Glimpse Into The Next 4-Hour Timeframe

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In this work, we introduce a bio‑inspired encoding framework for forecasting the direction of financial time series. Motivated by the limitations of linear models and the opacity of many deep learning approaches, we draw an analogy to genetics: observable micro‑patterns are encoded into symbolic "Financial DNA" sequences. These sequences are then analyzed using a probabilistic state‑transition mechanism to estimate the likelihood of subsequent market directions. We evaluate the approach on Bitcoin hourly OHLCV data with a rolling backtest. Among the horizons considered, modeling transitions from current Financial DNA patterns to the 4‑hour‑ahead price direction yields the strongest results, achieving a win ratio of 0.729. The findings suggest that compact, interpretable symbolic representations can capture salient, recurring structures in noisy, non‑stationary markets and support effective directional forecasts.

Article activity feed