Loss of Nuclear TDP-43 Impairs Lipid Metabolism in Microglia-Like Cells
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive motor neuron loss, with TDP-43 pathology present in over 90% of cases. While neuroinflammation is a recognized hallmark, the role of microglia in ALS pathogenesis remains incompletely understood. Here, we demonstrate that TDP-43 regulates microglial function via triglyceride metabolism. Using shRNA-mediated TARDBP knockdown in human monocyte-derived microglia-like cells (MDMi), we observed suppressed cholesterol biosynthesis, upregulated fatty acid uptake, lipid droplet accumulation, enhanced phagocytic activity, and increased IL-1β production. Inhibiting diacylglycerol acyltransferase (DGAT) enzymes reduced lipid droplet formation, phagocytosis, and IL-1β, directly linking the triglyceride pathway to microglial activation. Patient-derived MDMi from both sporadic and TARDBP -mutant ALS cases showed overlapping as well as distinct alterations, some of which were reversed by DGAT inhibition. Our findings identify dysregulated triglyceride metabolism as a novel pathway through which TDP-43 mediates microglial dysfunction, highlighting a potential therapeutic target for ALS.