KinForm: Kinetics-Informed Feature Optimised Representation Models for Enzyme kcat and KM Prediction

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Kinetic parameters such as the turnover number (kcat ) and Michaelis constant (KM) are essential for modelling enzymatic activity but experimental data remains limited in scale and diversity. Previous methods for predicting enzyme kinetics typically use mean-pooled residue embeddings from a single protein language model to represent the protein. We present KinForm, a machine learning framework designed to improve predictive accuracy and generalisation for kinetic parameters by optimising protein feature representations. KinForm combines several residue-level embeddings (Evolutionary Scale Modeling Cambrian, Evolutionary Scale Modeling 2, and ProtT5-XL-UniRef50), taken from empirically selected intermediate transformer layers, and applies weighted pooling based on per-residue binding-site probability. To counter the resulting high dimensionality, we apply dimensionality reduction using principal–component analysis (PCA) on concatenated protein features, and rebalance the training data via a similarity-based oversampling strategy. KinForm outperforms baseline methods on two benchmark datasets. Improvements are most pronounced in low sequence similarity bins. We observe improvements from binding-site probability pooling, intermediate-layer selection, PCA, and oversampling of low-identity proteins. We also find that removing sequence overlap between folds provides a more realistic evaluation of generalisation and should be the standard over random splitting when benchmarking kinetic prediction models.

Article activity feed