Passive scalar transport in a cross-ventilating flow with upstream source: Wind and Water tunnel measurements

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In urban environments, pollutant ingress from outdoor sources poses a significant challenge to indoor air quality. Cross-ventilation, while essential for passive cooling and natural airflow, can also facilitate the entry of outdoor contaminants into indoor spaces. To investigate the dynamics of outdoor-to-indoor pollutant transport, the present study employs an idealised configuration, namely a hollow cube representing a scaled-down model building with window openings in the upstream and downstream faces, subjected to an upstream passive scalar source within an atmospheric boundary layer. The experiments are conducted in two distinct facilities: a water tunnel using Rhodamine dye as the scalar, and a wind tunnel using propane gas, all performed at a specified flow Reynolds number of Re = U Ref H/ν ≈ 50, 000 for a fixed boundary layer-to-cube height ratio of about 3; here, U Ref is the streamwise velocity at cube’s height (H) measured without the cube. The scalar, released from a ground-level upstream source, is predominantly transported by a streamwise advective flux, while relatively weaker wall-normal advective and turbulent fluxes contribute to vertical dispersion and local mixing. A fraction of the oncoming scalar enters the cube intermittently, through the upstream window. Inside, a central jet-like flow carries the scalar parcels primarily by streamwise advective flux, while also interacting with the upper and lower recirculation regions, enabling scalar exchange across these zones through wall-normal advective and turbulent fluxes. While the time-averaged concentration field inside the cube is nearly uniform, suggesting effective mixing, instantaneous concentration traces exhibit strong intermittency, with sporadic peak events, highlighting the risk of transient peak exposures. The indoor concentration exponentially decays over time once the source is turned off, with a slower decay in the upper recirculation region, implying relatively prolonged exposure near the ceiling region. Both experimental setups produce closely matching values and consistent trends in the spatio-temporal dynamics of scalar concentration, and also highlight their complementary nature, with each offering distinct advantages. The present findings will deepen our understanding of pollutant ingress and mixing in buildings in cross-ventilated flows and also offer valuable insights to future modelling of pollutant exposure in urban indoor spaces.

Article activity feed