Qing-Chang-Hua-Shi granule ameliorates experimental colitis by modulating Lactobacillus gasseri-mediated ferroptosis metabolic pathway

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

Ulcerative colitis (UC) is a chronic inflammatory disorder marked by epithelial barrier disruption and persistent intestinal inflammation. Despite extensive research, its complex etiology continues to pose therapeutic challenges. Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has recently been implicated in UC pathogenesis. Additionally, the gut microbiota and its metabolites play a pivotal role in maintaining intestinal homeostasis and barrier integrity.

Purpose

This study aimed to investigate the therapeutic potential of a phytotherapeutic agent QCHS to alleviate UC by modulating ferroptosis and the microbiota-metabolome axis, with a particular focus on the role of Lactobacillus gasseri ( L. gasseri ).

Methods

A DSS-induced UC mouse model was used to evaluate QCHS efficacy. Gut microbial composition and metabolomic alterations were analyzed via 16S rDNA sequencing and UHPLC-MS/MS. L. gasseri was cultured in vitro to assess the impact of QCHS on its growth. RSL3-induced cell death was modeled in NCM-460 cells and ferroptosis-related changes were examined using transmission electron microscopy, immunohistochemistry, quantitative PCR, and Western blotting.

Results

QCHS significantly mitigated DSS-induced ferroptosis in colonic tissues, with L. gasseri identified as a key mediator. Notably, L. gasseri was found to act as a novel ferroptosis inhibitor. In vitro studies confirmed that L. gasseri suppressed RSL3-induced ferroptosis in NCM-460 cells via activation of the GSH/GPX4 pathway.

Conclusion

This study provides compelling evidence for the regulatory role of QCHS on the microbiota-metabolome axis and ferroptosis in UC. It also uncovers a novel function of L. gasseri as a ferroptosis inhibitor, offering promising insights into microbiota-targeted and ferroptosis-modulating therapeutic strategies for UC.

Graphical Abstract

Article activity feed