Skin-Replaceable Antifouling Cellulose Ceramic Membranes from Jute Agro-Waste for Sustainable and Efficient Oily Wastewater Treatment

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Oily wastewater presents a serious environmental challenge, demanding sustainable and regenerative membrane technologies. Here, we report a green and scalable method for fabricating skin-replaceable cellulose membranes (SRC-M) from jute agro-waste, using a NaOH/urea activation route and argon-pressurized deposition onto ceramic supports. The resulting Cellulose II -based asymmetric membranes exhibit high water flux (~470 L m⁻² h⁻¹) and >98% oil rejection across various emulsions. Notably, the membrane’s surface can be fully renewed via ultrasonication, restoring >99% of the original flux after 16 fouling cycles. Density functional theory (DFT) calculations confirm the thermodynamic stability (ΔG = -0.162 eV) and low kinetic barrier (0.46 eV) of urea adsorption on cellulose, supporting the dissolution mechanism and regeneration behavior. This biodegradable, self-renewable membrane system offers a robust, circular solution for long-term oily wastewater remediation and aligns with green chemistry principles.

Article activity feed