Lattice Random Walk Discretisations of Stochastic Differential Equations

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We introduce a lattice random walk discretisation scheme for stochastic differential equations (SDEs) that samples binary or ternary increments at each step, suppressing complex drift and diffusion computations to simple 1 or 2 bit random values. This approach is a significant departure from traditional floating point discretisations and offers several advantages; including compatibility with stochastic computing architectures that avoid floating-point arithmetic in place of directly manipulating the underlying probability distribution of a bitstream, elimination of Gaussian sampling requirements, robustness to quantisation errors, and handling of non-Lipschitz drifts. We prove weak convergence and demonstrate the advantages through experiments on various SDEs, including state-of-the-art diffusion models.

Article activity feed