Colony formation sustains the global competitiveness of N2-fixing Trichodesmium under ocean acidification

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Anthropogenic CO2 emissions drive ocean acidification (OA). Trichodesmium, a key marine N2 fixer, displays contrasting growth responses to OA across morphotypes, with negative responses in free trichomes but neutral or positive in colonies. However, the lack of mechanistic understanding for these discrepancies has impaired our ability to predict the ecophysiological response of Trichodesmium in the changing ocean. Here, we developed ecophysiological models of Trichodesmium and underpin mechanisms behind contrasting responses to OA by distinct morphological adaptations. For free trichomes, our diurnal model corroborated previous findings that OA impairs nitrogenase efficiency and photosynthetic energy production. In colonies, however, OA alleviated copper and ammonia toxicity within the microenvironment, potentially with increased iron acquisition synergies, outweighing the minor effects of inorganic carbon limitation relief in the colony center. Projections suggest that globally, OA will reduce N2 fixation of trichomes by 16±6% but increase that of colonies by 19±24% within this century. By resolving morphotype-specific mechanisms, our study clarifies Trichodesmium’s adaptive strategies, which may enable it to sustain its competitiveness and biogeochemical impacts in the changing ocean.

Article activity feed