Accurate Screening of Functional Materials with Machine-Learning Potential and Transfer-Learned Regressions: Heusler Alloy Benchmark

Read the full article See related articles

Discuss this preprint

Start a discussion

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We present a machine learning-accelerated high-throughput (HTP) workflow for the discovery of functional materials. As a test case, quaternary and all-d Heusler compounds were screened for stable compounds with large magnetocrystalline anisotropy energy (Eaniso). Structure optimization and evaluation of formation energy and energy above the convex hull were performed using the eSEN-30M-OAM interatomic potential, while local magnetic moments, phonon stability, magnetic stability, and Eaniso were predicted by eSEM models trained on our DxMag Heusler database. A frozen transfer learning strategy was employed to improve accuracy. Candidate compounds identified by the ML-HTP workflow were validated with density functional theory, confirming high predictive precision. We also benchmarked the performance of different MLIPs, and discussed the fidelity of local magnetic moment prediction and its extension to other magnetic materials.

Article activity feed