Stabilisation of HIF signalling in the mouse epicardium extends embryonic potential and neonatal heart regeneration
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In humans, new-born infants can regenerate their heart during early life. This is modelled in the mouse, where regenerative capacity is maintained for the first week after birth but lost thereafter. Reactivation of this process holds great therapeutic potential; however, the molecular pathways that might be targeted to extend neonatal regeneration remain elusive. Here, we explored a role for hypoxia and HIF signalling on the regulation of epicardial activity in the developing mouse heart and in modulating the response to injury. Hypoxic regions were found in the epicardium from mid-gestation, associating with HIF-1α and HIF-2α, and expression of the epicardial master regulator Wilms’ tumour 1 (WT1). Epicardial deletion of Hif1a reduced WT1 levels, leading to impaired coronary vasculature. Targeting of the HIF degradation enzyme PHD, through pharmacological inhibition with a clinically approved drug or epicardial-specific deletion, stabilised HIF and promoted WT1 activity ex vivo . Finally, a combination of genetic and pharmacological stabilisation of HIF during neonatal heart injury led to prolonged epicardial activation, preservation of myocardium, augmented infarct resolution and preserved function beyond the 7-day regenerative window. These findings suggest modulation of HIF signalling extends epicardial activation to maintain myocardial survival beyond the neonatal regenerative window and may represent a viable strategy for treating ischaemic heart disease.