Distributed photonic variational quantum eigensolver with parameterized weak measurements
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We demonstrate a two-qubit variational quantum eigensolver (VQE) implementation using two spatially separated single-photon processors connected via a 3 km optical fiber network. Our approach leverages local operations on pre-shared entanglement to evaluate two-qubit Hamiltonians. By incorporating parameterized weak measurement operations within the local operations framework, we enable access to the complete Hilbert space across distributed quantum processors – a capability typically requiring complex non-local operations. Our experimental results show accurate ground state energy estimation for Hamiltonians including H-He + cation and the Schwinger model, validating both the necessity of weak measurements and high-quality entanglement in distributed quantum computing. This work establishes a promising direction for resource-efficient, scalable quantum network architectures that maintain full computational capabilities through local operations and controlled entanglement manipulation.