Deep Segmentation of 3+1D Radar Point Cloud for Real-Time Roadside Traffic User Detection
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Smart cities rely on intelligent infrastructure to enhance road safety, optimize traffic flow, and enable vehicle-to-infrastructure (V2I) communication. A key component of such infrastructure is an efficient and real-time perception system that accurately detects diverse traffic participants. Among various sensing modalities, automotive radar is one of the best choices due to its robust performance in adverse weather and low-light conditions. However, due to low spatial resolution, traditional clustering-based approaches for radar object detection often struggle with vulnerable road user detection and nearby object separation. Hence, this paper proposes a deep learning-based 3+1D radar point cloud clustering methodology tailored for smart infrastructure-based perception applications. This approach first performs semantic segmentation of the radar point cloud, followed by instance segmentation to generate well-formed clusters with class labels using a deep neural network. It also detects single-point objects that conventional methods often miss. The described approach is developed and experimented using a smart infrastructure-based sensor setup and it performs segmentation of the point cloud in real-time. Experimental results demonstrate 95.35% F1-macro score for semantic segmentation and 91.03% mean average precision (mAP) at an intersection over union (IoU) threshold of 0.5 for instance segmentation. Further, the complete pipeline operates at 43.61 frames per second with a memory requirement of less than 0.7 MB on the edge device (Nvidia Jetson AGX Orin).