Mechanical Properties of Thermoformed and Direct- Printed Aligner Materials After Immersion in 37 °C Water: A 14-Day In Vitro Study
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study compared the mechanical properties of direct-printed dental aligner materials made from 3D-printed resins TC-85, TR-07, and TA-28 with those of two conventional thermoformed materials—Zendura-A and Zendura-Flx—to evaluate their performance under simulated physiological conditions. Test specimens were immersed in a 37°C water bath for 12 different durations: 0, 5, and 30 min; 1, 3, 6, and 9 h; and 1, 3, 7, and 14 d. Tensile tests were performed using a universal testing machine (Zwick Z010, Zwick, Ulm, Germany) to measure the Young’s modulus (MPa), elongation at break (%), and tensile force (N) at strains of 1%, 2%, and 3%. After 14 d of immersion, TC-85, TA-28, and TR-07 exhibited forces in the range of 4.04–7.24 N at 1% strain and 7.30–13.48 N at 3% strain, while Zendura A and Zendura FLX exhibited forces of 26.26–32.91 N at 1% strain and 32.91–65.23 N at 3% strain. The Young’s modulus and UTS results exhibit a trend similar to that of the tensile force. Direct-printed aligners exhibited a 25.3% (TC-85) increase in elongation at break after 30 min, whereas thermoformed aligners exhibited a 5.5% reduction. Direct-printed resins, such as TC-85, TA-28, and TR-07, with temperature-responsive viscoelastic behavior, exhibited statistically significant differences from thermoformed aligner materials, delivering lower mechanical loads that could favor a more suitable orthodontic force profile for clear aligners.