UniDCF: A Foundation Model for Comprehensive Dentocraniofacial Hard Tissue Reconstruction
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Dentocraniofacial hard tissue defects profoundly affect patients’ physiological functions, facial aesthetics, and psychological well-being, posing significant challenges for precise reconstruction. Current deep learning models are limited to single-tissue scenarios and modality-specific imaging inputs, resulting in poor generalizability and trade-offs between anatomical fidelity, computational efficiency, and cross-tissue adaptability. Here we introduce UniDCF, a unified framework capable of reconstructing multiple dentocraniofacial hard tissues through multimodal fusion encoding of point clouds and multi-view images. By leveraging the complementary strengths of each modality and incorporating a score-based denoising module to refine surface smoothness, UniDCF overcomes the limitations of prior single-modality approaches. We curated the largest multimodal dataset, comprising intraoral scans, CBCT, and CT from 6,609 patients, resulting in 54,555 annotated instances. Evaluations demonstrate that UniDCF outperforms existing state-of-the-art methods in terms of geometric precision, structural completeness, and spatial accuracy. Clinical simulations indicate UniDCF reduces reconstruction design time by 99% and achieves clinician-rated acceptability exceeding 94%. Overall, UniDCF enables rapid, automated, and high-fidelity reconstruction, supporting personalized and precise restorative treatments, streamlining clinical workflows, and enhancing patient outcomes.