A stochastic approach to integerise floating-point estimates in gridded population mapping
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Gridded population datasets are increasingly relied upon for spatial planning, resource allocation, and disaster response due to their flexible integration with other spatial data layers. These datasets are typically produced by disaggregating population counts from administrative units into grid cells, yielding non-integer values that preserve overall counts. However, floating-point cell values are often difficult for users to interpret, and standard rounding approaches may introduce aggregation errors at administrative levels that affect planning decisions. Here, we present a stochastic integerisation method that preserves total population and demographic proportions, and compare it with existing approaches. The method separates the value of each cell into integer and decimal parts, and probabilistically allocates the residual based on decimal magnitudes. Applying the method to gridded population data shows that it effectively reduces unrealistic population predictions in uninhabited areas. The results also demonstrate that the new integerisation method can effectively convert floating-point population estimates into integers while preserving both spatial distribution and demographic proportions, such as age-sex structures. These findings highlight the performance of the proposed integerisation method to generate reliable gridded population distribution datasets across diverse contexts that are easier to interpret, particularly for areas with sparse populations or complex geometries of underlying administrative units.