Integrative Analysis of Serum Lipids and Chronic Gastritis: Causal Insights from Mendelian Randomization and Experimental Models

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background Lipid metabolism may be linked to chronic gastritis, but its causal role remains unclear. While current research emphasizes inflammation, mucosal changes, immune regulation, genetics, and the gut microbiota, the contribution of lipid metabolism is understudied. This study aims to evaluate the impact of serum lipids and the mechanistic roles of lipid-lowering drug targets in chronic gastritis. Methods We conducted a cross-sectional study using data from real world. Multivariable logistic regression was performed to assess the association between serum lipid profiles and gastritis. Mendelian randomization (MR) analyses based on genome-wide association study (GWAS) datasets were performed to detect the causal relationship of serum lipids, plasma lipid species, and lipid-lowering drug targets. Experimental validation was conducted using high-fat diet (HFD)-fed mice and chemically induced CAG rat models. Results 4,061 person, including 1,023 patients with chronic atrophic gastritis (CAG), 1,742 with non-atrophic gastritis (NAG), and 1,296 as healthy population were included in the analysis. Through covariates adjustment, TC, ApoA1, and HDL-C showed to be associated with an increased risk of chronic gastritis, whereas TG exhibited a protective effect. MR analysis confirmed a significant inverse causal relationship between TG and gastritis (OR = 0.889, 95% CI: 0.825–0.958). Ten plasma lipid species and lipid-lowering gene targets, including LPL and APOC3, were identified as causally associated with disease risk. Mediation analysis revealed six plasma lipid species as potential intermediaries linking genetic variation to gastritis. In vivo experiments demonstrated progressive hepatic steatosis and mild gastric mucosal changes in HFD-fed mice. Immunohistochemical analysis further revealed a significant reduction in LPL and APOC3 expression in gastric tissue ( P  < 0.05). In the CAG rat model, histological analysis revealed hepatocyte disarray, edema, and gastric mucosal atrophy. Elevated levels of TNF-α, IL-6, IL-1β and decreased levels of GAS-17 and PG I/II were also observed ( P  < 0.05). Western blot analyses further confirmed the downregulation of LPL and APOC3 expression in gastric tissue ( P  < 0.05). Conclusions This study provides genetic and experimental evidence, supporting a causal role of lipid metabolism in chronic gastritis. LPL and APOC3 are implicated in its pathogenesis, highlighting potential lipid-targeted strategies for prevention and treatment.

Article activity feed