An induced pluripotent stem cell model of Schwann cell differentiation reveals NF2- related gene regulatory networks

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Schwann cells are vital to development and maintenance of the peripheral nervous system and their dysfunction has been implicated in a range of neurological and neoplastic disorders, including NF2 -related schwannomatosis ( NF2 -SWN). We have developed a novel human induced pluripotent stem cell (hiPSC) model for the study of Schwann cell differentiation in health and disease. We performed transcriptomic, immunofluorescence, and morphological analysis of hiPSC derived Schwann cell precursors (SPCs) and terminally differentiated Schwann cells (SCs) representing distinct stages of development. To further validate our findings, we performed integrated, cross-species analyses across multiple external datasets at bulk and single cell resolution. Our hiPSC model of Schwann cell development shared overlapping gene expression signatures with human amniotic mesenchymal stem cell (hAMSCs) derived SCs and in vivo mouse models, but also revealed unique features that may reflect species-specific aspects of Schwann cell biology. Moreover, we have identified gene co-expression modules that are dynamically regulated during hiPSC to SC differentiation associated with ear and neural development, cell fate determination, the NF2 gene, and extracellular matrix (ECM) organization. Through integrated analysis of multiple datasets and genetic disruption of NF2 via CRISPR-Cas9 gene editing in hiPSC derived SCPs, we have identified a series of novel ECM associated genes regulated by Merlin. Our hiPSC model further provides a tractable platform for studying Schwann cell development in the context of rare diseases such as NF2 -SWN which lack effective medical therapies.

Article activity feed