Quantitative Kernel Estimation from Traffic Signs using Slanted Edge Spatial Frequency Response as a Sharpness Metric
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The sharpness is a critical optical property of automotive cameras, measured by the Spatial Frequency Response (SFR) within the end of line (EOL) test after manufacturing. This work presents a method to estimate the blurring kernel of automotive camera for state monitoring. To achieve this, Principal Component Analysis (PCA) is performed, using synthetic kernels generated by Zemax. The PCA model is built with approximately 1300 base kernels representing spatially variant point spread functions (PSFs). This model generates kernel samples during the estimation process. Synthetic images are created by convolving the synthetic kernels with reference traffic sign images and compared with real-life data captured by an automotive camera. These synthetic data are utilized for algorithm development, and later on validation is performed on real-life data. The algorithm extracts two 45 x 45 pixels regions of interest (ROIs) containing slanted edges from the blurred image and crops matching ROIs from a reference sharp image. Each candidate kernel blurs the reference ROIs, and the resulting Spatial Frequency Response (SFR) is compared with the blurred ROIs’ SFR. Differential evolution optimization minimizes the SFR difference, selecting the kernel that best matches the observed blur. The final kernel is evaluated against the true kernel for accuracy. Structural similarity index measure (SSIM) between the original and estimated blurred ROIs ranges from 0.808 to 0.945. For true vs. estimated kernels, SSIM varies from 0.92 to 0.98. Pearson correlation coefficients range from 0.84 to 0.99, Cosine similarity from 0.86 to 0.98, and mean squared error (MSE) from 1.1 x 10-5 to 8.3 x 10-5. Validation on real-life camera images shows that the SSIM between estimated ROI is >0.82 indicating a sufficient level of accuracy in kernel estimation to detect potential degradation of the camera.