Fractional interacting particle system: drift parameter estimation via Malliavin calculus
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We address the problem of estimating the drift parameter in a system of $N$ interacting particles driven by additive fractional Brownian motion of Hurst index \( H \geq 1/2 \). Considering continuous observation of the interacting particles over a fixed interval \([0, T]\), we examine the asymptotic regime as \( N \to \infty \). Our main tool is a random variable reminiscent of the least squares estimator but unobservable due to its reliance on the Skorohod integral. We demonstrate that this object is consistent and asymptotically normal by establishing a quantitative propagation of chaos for Malliavin derivatives, which holds for any \( H \in (0,1) \). Leveraging a connection between the divergence integral and the Young integral, we construct computable estimators of the drift parameter. These estimators are shown to be consistent and asymptotically Gaussian. Finally, a numerical study highlights the strong performance of the proposed estimators. AMS 2010 subject classifications: Primary 62M09; secondary 60G18, 60H07, 60H10.