A novel, synthesized, amphiphilic ethylene glycol squalene derivative suppresses BBN-induced bladder carcinogenesis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Squalene, a natural triterpene with antioxidant, anti-inflammatory, and immunostimulatory properties, holds promise for cancer therapy. Here, we examined a previously developed, diethylene glycol derivative of squalene (SQ-diEG) and investigated its in vivo anti-carcinogenic effects in bladder cancer. C57BL/6 mice were treated with 0.025% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) to induce bladder cancer, with SQ-diEG or PBS (control) administered orally from Week 0. SQ-diEG significantly reduced bladder cancer incidence to 3.7% after 8 weeks, compared to 21.4% in controls (p=0.025). Transcriptomic analysis indicated that SQ-diEG may exert anti-carcinogenic effects by reducing ROS-mediated DNA damage, enhancing the immune microenvironment, and modulating cholesterol biosynthesis via SQLE downregulation. In vitro, SQ-diEG inhibited proliferation and induced apoptosis in bladder cancer cell lines. This study is the first to demonstrate that SQ-diEG significantly reduces bladder cancer in a BBN mouse model, highlighting potential for therapeutic development. Further research is needed to elucidate the mechanisms and long-term efficacy of SQ-diEG.