Multi-center evaluation of radiomics and deep learning to stratify malignancy risk of IPMNs
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Distinguishing high-risk intraductal papillary mucinous neoplasms (IPMNs), pancreatic cysts requiring surgery, from low-risk lesions remains a clinical challenge, often resulting in unnecessary procedures due to limited specificity of current methods. While radiomics and deep learning (DL) have been explored for pancreatic cancer, cyst-level malignancy risk stratification of IPMNs remains untapped. We conducted a multi-institutional study (seven centers, 359 T2W MRI images) to assess the feasibility of AI for predicting IPMN dysplasia grade using cyst-level image features. We developed and compared 2D and 3D radiomics-only, deep learning (DL)-only, and radiomics-DL fusion models, using expert radiologist scoring as a baseline reference. Model performance was evaluated using held-out test data. The radiomics-DL fusion model showed the highest discriminatory ability on the test set (AUC 0.692), outperforming the radiomics-only model (AUC 0.665). Expert accuracy varied widely (37.4%-66.7%). The fusion model integrating deep learning and radiomics features from routine T2W MRI (AUC: 0.692) demonstrates potential for objective, cyst-level risk stratification of IPMNs in a multi-center cohort, outperforming both radiomics-only models and expert radiologists. While performance requires improvement for standalone clinical use, this approach offers a scalable, non-invasive method to potentially improve diagnostic accuracy and reduce unnecessary surgical interventions.