Shaker potassium channel mediates an age-sensitive neurocardiac axis regulating sleep and cardiac function in Drosophila
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The Shaker (Sh) gene in Drosophila melanogaster encodes a voltage-gated potassium channel essential for regulating neuronal excitability and cardiac function. While Sh's role in neuronal physiology, particularly in sleep regulation, is relatively well-studied, its contribution to cardiac physiology and inter-tissue communication remains poorly understood. This study explores the impact of Sh mutations ( Shmns and Sh5 ) on heart function and sleep/circadian behaviors, aiming to uncover potential neurocardiac interactions in an age-dependent manner. Cardiac performance and locomotor/sleep activity were assessed in mutant and control flies across aging cohorts under both normal and circadian-disrupted conditions, with and without time-restricted feeding (TRF). Shmns mutants displayed progressive, age-dependent cardiac dysfunction, including increased heart period, elevated arrhythmicity index, prolonged systolic and diastolic intervals, and diminished heart rate and fractional shortening, as well as disorganization of actin-containing myofibrils. These defects were paralleled by severe sleep loss and hyperactivity, suggesting a strong link between sleep/circadian dysregulation and cardiac impairment. Circadian disruption further exacerbated both cardiac and behavioral phenotypes, whereas TRF partially ameliorated these defects, highlighting a modulatory role for feeding timing. Tissue-specific knockdowns of Sh in cardiac and neuronal tissues recapitulated both heart and sleep abnormalities, with neuronal knockdown alone significantly impairing cardiac function, supporting a neurocardiac regulatory axis. Altogether, our findings reveal that Shaker channels mediate a critical, age-sensitive interplay between sleep/circadian systems and cardiac homeostasis in Drosophila . This work provides mechanistic insight into neurocardiac communication and suggests that KCNA1 -linked human channelopathies may similarly impact sleep and cardiovascular health, offering a potential translational framework for age-related disorders.