Biliverdin reductase B as a new target in breast cancer
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background Enhanced metabolic and mitochondrial activity inherent in actively proliferating cancer cells is associated with intracellular redox imbalance that impacts cellular viability. To restore redox homeostasis cancer cells evolve to activate redox protective mechanisms. This differential activation of redox defense pathways compared to normal cells provides a therapeutic window for novel targeted therapies in cancer. Although the heme metabolism emerges as a crucial regulator of redox homeostasis and iron metabolism in cancer cells with frequent alteration in breast cancer, it remains largely unexplored, and no targeted translational approaches have been developed. Heme-regulated redox homeostasis is coordinately maintained through biosynthetic and degradation pathways. As a byproduct of TCA cycle, cytotoxic heme is initially derivatized by heme oxygenases and progressively metabolized to the potent antioxidant bilirubin by two non-redundant biliverdin reductases, BLVRA and BLVRB. BLVRB overexpression has been observed in breast cancers, although its function in breast cancer pathogenesis remains unknown. Methods CRISPR/Cas9 deletion of BLVRB in multiple breast cancer cell lines demonstrated its profound effect on intracellular redox state and cell proliferation in vitro and xenograft models. Integrated proteomic, metabolomic, and lipidomic studies identified and validated BLVRB–mediated adaptive metabolic responses required for breast cancer cell cytoprotection. Results We have established BLVRB as a requisite component of the pro-survival redox defense mechanism in breast cancer cells. Targeted deletion of BLVRB induces reductive stress, leading to alterations in endoplasmic reticulum proteostasis and lipid composition. These defects impact plasma membrane functionality and endosomal recycling of multiple oncogenic receptors, such as HER2 and transferrin receptors. Conclusions These data collectively identify BLVRB as a novel metabolic target in breast cancer, distinct from other redox-regulating pathways. This study, along with our recent progress in developing novel specific BLVRB inhibitors, offers a unique translational opportunity for targeted therapies in personalized breast cancer medicine.