Engineering mice for female-biased progeny without impacting genetic integrity and litter size
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Generating mammalian gametes with a skewed sex ratio has thus far eluded empirical confirmation. The utilization of such genetically engineered organisms would offer the potential to curtail the necessity for culling animals of undesirable sex, mitigate resource wastage, and alleviate superfluous labor burdens. In this study, we introduce a transgenic male mouse lineage, which consistently yields predominantly female progeny (comprising up to ~90% of the total offspring). This accomplishment was made possible by integrating a controllable genetic cassette onto the Y chromosome. The cassette encodes dCas9 and RNA guides that selectively silence a spermatid maturation gene. After the separation of X and Y gametes during meiosis, gametes containing an X chromosome develop normally, while those harboring the engineered Y chromosome, subjected to dCas9 silencing of the spermatid maturation gene, do not mature properly. Indeed, some spermatozoa from the transgenic mice exhibit a unique morphology, associated with the absence of the maturation gene. Notably, the resultant female offspring do not inherit the genetically engineered Y chromosome and are thus not genetically modified. Importantly, the litter size of the transgenic mice remains unchanged compared to the wild type. These findings represent the potential of genetic engineering to yield sex-biased litters of full size without compromising genetic integrity, marking a pioneering advancement in this field of study.