High-resolution phenomics dataset collected on a field-grown, EMS- mutagenized sorghum population evaluated in hot, arid conditions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Objectives: The University of Arizona Field Scanner (FS) is capable of generating massive amounts of data from a variety of instruments at high spatial and temporal resolution. The accompanying field infrastructure beneath the system offers capacity for controlled irrigation regimes in a hot, arid environment. Approximately 194 terabytes of raw and processed phenotypic image data were generated over two growing seasons (2020 and 2022) on a population of 434 sequence-indexed, EMS-mutagenized sorghum lines in the genetic background BTx623; the population was grown under well-watered and water-limited conditions. Collectively, these data enable links between genotype and dynamic, drought-responsive phenotypes, which can accelerate crop improvement efforts. However, analysis of these data can be challenging for researchers without background knowledge of the system and preliminary processing. Data description: This dataset contains formatted tabular data generated from sensing system outputs suitable for a wide range of end-users and includes plant-level bounding areas, temperatures, and point cloud characteristics, as well as plot-level photosynthetic parameters and accompanying weather data. The dataset includes approximately 422 megabytes of tabular data totaling 1,903,412 unique unfiltered rows of FS data, 526,917 cleaned rows of FS data, and 285 rows of weather data from the two field seasons.

Article activity feed