Two-dimensional perovskites with maximum symmetry enable exciton diffusion length exceeding 2 micrometers

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Realizing semiconductors with high symmetry of their crystallographic structures has been a virtue of inorganic materials and has resulted in novel physical behaviors. In contrast, hybrid (organic and inorganic) crystals such as two-dimensional metal halide perovskites exhibit much lower crystal symmetry due to in-plane or out-of-plane octahedral distortions. Despite their amazing ability for photoinduced light emission at room temperature, the Achilles' heel of this attractive class of 2D materials for optoelectronics remains the poor control and lack of performance for charge carrier transport. Inspired by the tremendous charge carrier properties of the 3D cubic perovskite phase (α) of FAPbI₃ and combining the use of the appropriate cage cation, the spacer molecule and the temperature and rate of crystallization, we report a new series of FA-based layered two-dimensional perovskites that exhibits the highest theoretically predicted symmetry with a tetragonal P4/mmm space group, resulting in no octahedral distortion in both in-plane and out-of-plane directions. These 2D perovskites present the shortest interlayer distances (4 Å), which results in systematically lower bandgaps (1.7 to 1.8 eV). Finally, the absence of octahedral distortions, results in an exciton diffusion length of 2.5 µm, and a diffusivity of 4.4 cm2s-1, both of which are an order of magnitude larger compared to previously reported 2D perovskites and on par with monolayer transition metal dichalcogenides.

Article activity feed