Deep Learning Algorithm for Predicting Rapid Progression of Abdominal Aortic Aneurysm by Integrating CT Images and Clinical Features
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Abdominal aortic aneurysm (AAA) progression carries a significant rupture risk, demanding accurate prediction models beyond traditional methods that rely on limited clinical parameters and often overlook complex factor interplay. We aimed to enhance prediction by developing and validating a multi-modal deep learning (DL) model integrating features derived from computed tomography (CT) imaging, geometric analysis, and clinical data. This retrospective study utilized data from 561 AAA patients sourced from Boramae Medical Center and Seoul National University Hospital, including 14,252 annotated CT axial images alongside detailed clinical information. Patients were categorized into rapid or slow progression groups based on an annual growth rate threshold of 2.5 mm/year. The multi-modal DL model that incorporated CT images, clinical features, and geometric features demonstrated superior predictive performance for rapid progression, achieving an area under the receiver operating characteristic curve (AUC) of 0.807 and an accuracy of 0.758. This significantly outperformed traditional machine learning models utilizing only clinical data (AUC: 0.716) or only geometric features (AUC: 0.715). The improvement in AUC was statistically significant according to DeLong’s test. This study underscores the value of AI-driven, multi-modal approaches for enhancing patient-specific AAA risk stratification, potentially enabling more precise monitoring and optimized timing for clinical interventions.