Genomic and epigenomic insights into purkinje and granule neurons in Alzheimer’s disease and related dementia using single-nucleus multiome analysis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Although the human cerebellum is known to be neuropathologically impaired in Alzheimer’s disease (AD) and AD-related dementias (ADRD), the cell type-specific transcriptional and epigenomic changes that contribute to this pathology are not well understood. Here, we report single-nucleus multiome (snRNA-seq and snATAC-seq) analysis of 103,861 nuclei isolated from both cerebellum and frontal cortex of AD/ADRD patients and normal controls. Using peak-to-gene linkage analysis, we identified 431,834 significant linkages between gene expression and cell subtype-specific chromatin accessibility regions enriched for candidate cis-regulatory elements (cCREs). These cCREs were associated with AD/ADRD-specific transcriptomic changes and disease-related gene regulatory networks, especially for RAR Related Orphan Receptor A (RORA) and E74 Like ETS Transcription Factor 1 (ELF1) in cerebellar Purkinje cells and granule cells, respectively. Trajectory analysis of granule cell populations further identified disease-relevant transcription factors, such as RORA, and their regulatory targets. Finally, we pinpointed two likely causal genes, Seizure Related 6 Homolog Like 2 (SEZ6L2) in Purkinje cells and KAT8 Regulatory NSL Complex Subunit 1 (KANSL1) in granule cells, through integrative analysis of cCREs derived from snATAC-seq, genome-wide AD/ADRD loci, and three-dimensional (3D) genome data. Via CRISPRi experiments, we found that perturbation of rs4788201 and rs62056801 significantly inhibited the expression of their target genes, SEZ6L2 and KANSL1, in human iPSC-derived neurons. This cell subtype-specific regulatory landscape in the human cerebellum identified here offers novel genomic and epigenomic insights into the neuropathology and pathobiology of AD/ADRD and other neurological disorders if broadly applied.