Algorithm for Wheat Spike Contour Extraction and Recognition in Complex Field Backgrounds

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Spikelet number, a core phenotypic parameter for wheat yield composition, requires precise estimation through accurate spike contour extraction and differentiation between grain surfaces and spikelet surfaces. However, technical challenges persist in precise spike segmentation under complex field backgrounds and morphological differentiation between grain/spikelet surfaces. Method : Building on two-year multi-angle wheat spike imagery, we propose an enhanced YOLOv9-LDS multi-scale object detection framework. The algorithm innovatively constructs a lightweight depthwise separable network (LDSNet) as backbone, balancing computational efficiency and accuracy through channel re-parameterization strategy; incorporates an ELA local attention module to build feature enhancement networks, and employs dual-path feature fusion mechanisms to strengthen edge texture responses, significantly improving discrimination of overlapping spikes and complex backgrounds. Further optimizes the loss function system by replacing traditional IoU with SIoU metric, enhancing bounding box regression through dynamic focus factors, and adding high-resolution small-object detection layers to mitigate dense spikelet feature loss. Results: Independent test set validation shows the improved model achieves 83.9% contour integrity recognition rate and 92.4% mAP@0.5, exceeding baseline by 3.2 and 5.3 percentage points respectively. Ablation studies confirm LDSNet-ELA integration reduces false positives by 27.6%, while the enhanced loss function system improves small-object recall by 19.4%. Conclusions: The proposed framework demonstrates superior performance in complex field scenarios with dense targets and dynamic illumination. The multi-scale feature synergy enhancement mechanism overcomes traditional models' limitations in detecting overlapping spikes. This method not only enables precise spike phenotyping but also provides robust algorithmic support for intelligent field spikelet counting systems, advancing translational applications in crop phenomics.

Article activity feed