Advancing Radiological Dermatology with an Optimized Ensemble Deep Learning Model for Skin Lesion Classification
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Advancements in radiation-based imaging and computational intelligence have significantly improved medical diagnostics, particularly in dermatology. This study presents an ensemble-based skin lesion classification framework that integrates deep neural networks (DNNs) with transfer learning, a customized DNN, and an optimized self-learning binary differential evolution (SLBDE) algorithm for feature selection and fusion. Leveraging computational techniques alongside medical imaging modalities, the proposed framework extracts and fuses discriminative features from multiple pre-trained models to improve classification robustness. The methodology is evaluated on benchmark datasets, including ISIC 2017 and the Argentina Skin Lesion dataset, demonstrating superior accuracy, precision, and F1-score in melanoma detection. The proposed method achieved classification accuracy of 98.5% evaluated using LSVM classifier on the Argentina Skin Lesion dataset underscoring the robustness of the proposed methodology. The proposed approach provides a scalable and computational efficient solution for automated skin lesion classification- contributing to improved clinical decision-making and enhanced patient outcomes. By aligning artificial intelligence with radiation-based medical imaging and bioinformatics, this research advances dermatological computer-aided diagnosis (CAD) systems, minimizing misclassification rates and supporting early skin cancer detection. The proposed approach provides a scalable and computationally efficient solution for automated skin lesion analysis, contributing to improved clinical decision-making and enhanced patient outcomes.