Low-temperature oxidation of hexagonal boron nitride during oxidative dehydrogenation reactions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The low-temperature oxidation of hexagonal boron nitride (h-BN) during oxidative dehydrogenation of propane (ODHP) is investigated using a combination of experimental techniques and theoretical modeling. This study explores the role of gas-phase radicals, such as n-propyl and hydroxyl radicals, in initiating the oxidation process, leading to the formation of oxygen-functionalized h-BN edges. Using ab initio molecular dynamics (AIMD) and density functional theory (DFT) calculations, we reveal the mechanism of h-BN oxidation, including hydrogen abstraction, molecular oxygen adsorption, and nitrogen oxide desorption. Experimental results confirm that oxidation occurs only in the presence of both oxygen and propane, demonstrating a critical dependence on reactor geometry on gas-phase radical generation. The oxidation process leads to the incorporation of oxygen into h-BN, forming boron oxyhydroxide phases that influence catalytic activity. These findings provide new insights into h-BN behavior under ODHP conditions and offer guidance for optimizing boron-based catalysts for selective alkane dehydrogenation.

Article activity feed