A Hybrid Spiking Neural Network-Quantum Classifier Framework: A Case Study Using EEG Data

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The study introduces a hybrid computational framework that combines neuro-inspired information processing using spiking neural networks (SNN) and quantum information processing using quantum kernels to develop quantum-enhanced machine learning models, demonstrated through the classification of EEG data as a case study. In the proposed SNN-quantum kernel classifier (SNN-QC), SNN with spike time information representation is employed to learn spatio-temporal interactions (EEG recorded from multiple channels over time). Frequency-based (rate-based) information as spike frequency state vectors are extracted from the SNN and classified using a quantum classifier. In the latter part, we use the quantum kernel approach utilizing feature maps for classification tasks. The proposed SNN-QC is demonstrated on a benchmark EEG dataset to classify three distinct wrist movement tasks in six binary classification setups as a proof of concept. We introduce a novel feature map with high-order nonlinearity, which has outperformed current state-of-the-art feature maps and various machine learning methods in most of the case studies. Furthermore, the role of hyperparameters for enhanced feature maps is also highlighted. The performance of SNN-QC is evaluated using statistical metrics and cross-validation techniques, demonstrating its 1 efficacy across multiple binary classifiers. An experimental validation is also performed on an IBM QPU. The results demonstrate that the SNN-QC significantly outperforms the models that use statistical features rather than features extracted from the SNN as SNN accounts for the temporal interaction between the spatio-temporal input variables. Finally, we conclude that the SNN-QC offers a potential pathway for developing more accurate neuromorphic-quantum enhanced systems that are both energy-efficient and biologically-inspired, well-suited for dealing with spatio-temporal data.

Article activity feed