Statin effects on immunoglobulin-G glycomic architecture and the link to cardiovascular disease

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background Immunoglobulin G (IgG) plays a critical role in immune defense yet our understanding of its role in cardiovascular disease (CVD) is evolving. Observational studies have correlated statin use with changes in IgG N-glycan structures. However, statin effects on IgG N-glycan changes have not been tested in randomized controlled trials, and their direct association with CVD remains unclear. Methods IgG N-glycans were measured at baseline and after one year of randomized high-intensity statin interventions in 2 sub-studies of randomized trials: JUPITER (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; NCT00239681; primary prevention; discovery, n = 239 participants); and TNT (Treating to New Targets; NCT00327691; secondary prevention; validation, n = 711). Using linear regression adjusted for baseline levels of IgG N-glycans and clinical risk factors (e.g., age, sex) as well as the occurrence of CVD during the year of follow-up, we investigated the one-year randomized effects of high-intensity rosuvastatin v. placebo on IgG N-glycans in JUPITER. Significant statin-IgG N-glycan associations were then validated in TNT with one-year randomized effects of high- v. low-intensity atorvastatin intervention. We examined the architecture of IgG N-glycan connectivity at baseline using a data-driven Bayesian network and compared it with the architecture after one year of randomized statin intervention. We then investigated whether the changes in IgG N-glycans triggered by statins were associated with incident CVD events. Results We identified 5 IgG N-glycans (corresponding to core fucosylated, monosialylated, and disialylated IgG N-glycans) in JUPITER whose levels decreased significantly with statin versus placebo (false discovery rate < 0.05), with an approximate 11.3–25.9% reduction in the individual IgG N-glycan levels. Four out of the five IgG N-glycans altered by statin were validated in TNT. Furthermore, monosialylation and core fucosylation (glycan peaks, GP 16 and 18) were inversely associated with CVD in JUPITER (OR = 0.87 and 0.73 per standard deviation increase, 95% CI: (0.57, 0.98) and (0.55, 0.96) respectively), and validated in TNT. Despite the effect of statin therapy on certain IgG N-glycans, the overall architecture of the IgG N-glycan network remained unchanged after one year of statin intervention. Conclusion High-intensity statin interventions decreased several specific IgG N-glycan levels without changing the overall architecture of IgG N-glycan connectivity. Two IgG N-glycans that were decreased by statins were inversely associated with CVD outcomes, suggesting that statins have effects on monosialylated and core fucosylated IgG N-glycans, which may affect their cardioprotective properties. These findings highlight a potential immunomodulatory role of statins through IgG N-glycan alterations that should be further investigated in relation to CVD.

Article activity feed