Spontaneous complexity in the dynamics of slow laboratory earthquakes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Rock deformation experiments play a key role in our understanding of earthquake physics and friction constitutive laws. These laws commonly describe the response of analogue laboratory faults as a simple and homogeneous system, without accounting for the spatial-temporal evolution of structures in the sample. However, increasing experimental evidence suggests that slip instability is closely tied to heterogeneity, complex rheologies, and inhomogeneous boundary conditions. To address this, we designed a novel transparent setup to observe real-time deformation, track the spatial-temporal evolution of shear fabric, and document unstable slip in experimental faults. Our video documentation reveals that the progressive development of fault fabrics results in heterogeneous but not random stress redistribution. We show that stress and structural heterogeneities play a key role in the nucleation, propagation, and arrest of slip instabilities, raising questions about the robustness of scaling laboratory frictional laws to nature.

Article activity feed