Piezo1 regulates the mechanotransduction of soft matrix viscoelasticity

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Mechanosensitive ion channels such as Piezo1 have fundamental roles in sensing the mechanical properties of the extracellular matrix. However, whether and how Piezo1 senses time-dependent matrix mechanical properties, that is, viscoelasticity, remains unknown. To address this question, we combine an immortalised mesenchymal stem cell line, in which Piezo1 expression can be silenced, with soft and stiff viscoelastic hydrogels that have independently tuneable elastic and viscous moduli. We demonstrate that Piezo1 is a regulator of the mechanotransduction of viscoelasticity in soft matrices, both experimentally and through simulations incorporating Piezo1 into a modified viscoelastic molecular clutch model. Using RNA sequencing, we also identify the transcriptomic responses of mesenchymal stem cells to matrix viscoelasticity and Piezo1 activity, identifying gene signatures that reflect their mechanobiology in soft and stiff viscoelastic hydrogels.

Article activity feed