Cortical Spectral Dynamics of Vibrotactile Frequency Processing

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

While scientific research has extensively explored how the brain integrates touch and pain signals, the cerebral processing of specific vibrotactile frequencies remains poorly understood. This gap is particularly significant given clinical evidence that vibrotactile stimulation can reduce pain in both chronic pain patients and experimental settings. Our study investigated the cortical electrophysiological correlates of peripheral vibrotactile stimulation across different frequencies in healthy volunteers, with a focus on frequency-dependent patterns of neuronal activation. While electroencephalogram (EEG) was recorded, healthy participants received vibrotactile stimulation to the left index fingertip at frequencies corresponding to established neural rhythms: delta (2 Hz), theta (6 Hz), alpha (12 Hz), beta (20 Hz), and gamma (40 Hz). We compared the EEG bandwidth activity between vibrotactile stimulation conditions relative to resting baseline. Our findings demonstrated that vibrotactile stimulation produces distinct frequency-dependent patterns of cortical activation. A key finding was that 6 Hz stimulation selectively enhanced theta power in the left prefrontal cortex - an electrophysiological signature previously linked to successful pain relief. These findings advance the understanding of the "spectrotopic" nature of vibrotactile frequency processing in the cortex and provide a mechanistic foundation for developing novel vibration-based therapies in the future.

Article activity feed