PGC-1 alpha overexpression in the skeletal muscle results in a metabolically active microbiome which is independent of redox signaling

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In this study, we investigated the potential relationship between the mitochondrial network and the microbiome using wild-type and skeletal muscle-specific PGC-1α (Pparg coactivator 1 alpha) overexpressing mice, both with and without exercise training. PGC-1α levels were significantly elevated in skeletal muscle and, notably, in the colon, which is anatomically proximal to the microbiome. However, no significant changes were observed in cell signaling or mitochondria-related proteins within the colon. On the other hand, mitochondrial H₂O₂ production in the colon decreased in the PGC-1α overexpressing group. The relative abundance of several bacterial taxa differed between wild-type and PGC-1α overexpressing groups, indicating a shift in the microbiome milieu probably to cope with the increased metabolism, enhanced short-chain fatty acid utilization, and improved endurance capacity. Ten weeks of exercise training differentially modulated the host microbiome in PGC-1α overexpressing and wild-type mice, facilitating adaptations to a broad range of exercise-induced challenges. The results of this study provide new insights into the possible cross-talk between mitochondria and the microbiome.

Article activity feed