KLF2 inhibition expands tumor-resident T cells and enhances tumor immunity
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Tissue resident memory CD8+ T cells (Trm) constitute a distinct population of non-circulating memory T cells 1-5 vastly exceeding the number of circulating T cells 5 , and play a pivotal role in protective immunity against pathogens 6-8 . How to promote the generation of vaccine specific Trm remains an important challenge. Whether Trm contribute also to immune control of tumors or just correlate with an unrelated process linked to clinical outcome has not been unequivocally established 9,10 , and phenotypic markers such as co-expression of CD69 and CD103 or CD49a integrins commonly used to monitor tumor infiltrating Trm do not unambiguously define this subset. Here we tested the hypothesis that transient downregulation of KLF2, the most conserved feature of Trm ontogeny 4,11,12 , will promote the differentiation of vaccine activated CD8+ T cells into Trm and enhance antitumor immunity. We show that 4-1BB antibody targeted delivery of a KLF2 siRNA to tumor bearing mice led to the downregulation of KLF2 in vaccine activated CD8+ T cells and the accumulation of phenotypically defined intratumoral CD69+CD103+ and CD69+CD49a+ CD8+ T cells which correlated with enhanced control of tumor growth. This study could serve as the foundation of a broadly applicable and clinically useful way to promote the generation of vaccine specific Trm and provides direct evidence that intratumoral CD8+CD69+CD103+ and CD8+CD69+CD49a+ cells are indeed Trm and that Trm contribute to tumor immunity.