Genome-wide exploration of soybean domestication traits: integrating association mapping and SNP × SNP interaction analyses
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Soybean domestication has been essential for crop evolution, adaptation, and modern breeding. Despite advancements in understanding soybean genetics, the genetic basis of DRTs has yet to be fully explored, particularly in the context of genome-wide association studies (GWASs) and gene interaction analyses (epistasis). This study evaluated 198 diverse soybean accessions using 23,574 high-quality SNPs obtained via ddRAD-seq. Nine key DRTs—including those related to seed size (length, width, and thickness), seed coat color, cotyledon color, hypocotyl color, stem growth habit, flower color, pod color, pubescence, and pod-shattering—were phenotyped in two environments. A GWAS conducted via the FarmCPU and BLINK models identified 78 significant SNPs, 14 consistently detected across both environments and models, demonstrating stability. Notably, the SNP rs.Gm16.29778273 linked to pod-shattering resistance. The functional annotation linked three known quantitative trait loci (QTLs)/genes and revealed 11 novel candidate genes associated with DRTs, providing insights into their roles via Gene Ontology (GO) terms. The main effect SNP × SNP interaction analysis revealed that the significant SNP rs.Gm13.16695800 exhibits a pleiotropic effect, controlling both hypocotyl and flower color. Furthermore, 324 epistatic interactions were identified, influencing the expression of DRTs, thereby highlighting the complex genetic architecture underlying these traits. These findings offer valuable insights into domestication and the traits linked to higher yield. They provide a solid foundation for developing marker-assisted selection (MAS) strategies and functional studies to improve soybean breeding for resilient, high-yielding varieties.