A three-dimensional high throughput assay identifies novel antibacterial molecules with activity against intracellular Shigella
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The Gram-negative bacterial species Shigella is the second leading cause of diarrhea among children in low and middle-income countries (LMICs) and is a World Health Organization (WHO) priority pathogen. Shigella infections are becoming increasing difficult to treat due to antimicrobial resistance (AMR), leading to an urgent for new antimicrobial agents with novel modes of action. Shigella pathogenesis is largely intracellular and antibacterial chemicals that preferentially work inside cells may be desirable to limit collateral AMR and block key components of the Shigella infection cycle. Aiming to facilitate the process of identifying antibacterial chemicals that kill intracellular Shigella , we developed a high-throughput screening (HTS) cell-based chemical screening assay. The three-dimensional (3-D) assay, incorporating Shigella invasion into Caco-2 cells on Cytodex 3 beads, was scaled into a 384 well platform for screening chemical compound libraries. Using this assay, we evaluated > 500,000 compounds, identifying 12 chemical hits that inhibit Shigella replication inside cells. This simple, efficient and HTS-compatible assays circumvents many of the limitations of traditional screening methods with cell monolayers and may be deployed for antibacterial compound screening for other intracellular pathogens.