Emergent dynamics of active elastic microbeams
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In equilibrium, the physical properties of matter are set by the interactions between the constituents. In contrast, the energy input of the individual components controls the behavior of synthetic or living active matter. Great progress has been made in understanding the emergent phenomena in active fluids, though their inability to resist shear forces hinders their practical use. This motivates the exploration of active solids as shape-shifting materials, yet, we lack controlled synthetic systems to devise active solids with unconventional properties. Here we build active elastic beams from dozens of active colloids and unveil complex emergent behaviors such as self-oscillations or persistent rotations. Developing tensile tests at the microscale, we show that the active beams are ultra-soft materials, with large (non-equilibrium) fluctuations. Combining experiments, theory, and stochastic inference, we show that the dynamics of the active beams can be mapped on different phase transitions which are tuned by boundary conditions. More quantitatively, we assess all relevant parameters by independent measurements or first-principles calculations, and find that our theoretical description agrees with the experimental observations. Our results demonstrate that the simple addition of activity to an elastic beam unveils novel physics and can inspire design strategies for active solids and functional microscopic machines.