Retrieval-Augmented-Generation large language models outperform junior clinicians in guideline-concordant PSA testing

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background and Objective Society guidelines for prostate cancer screening via PSA testing serve to standardize patient care, and are often utilized by trainees, junior staff, or generalist medical practitioners to guide medical decision-making. Adherence to guidelines is a time-consuming and challenging task and rates of inappropriate PSA testing are high. This study evaluates a retrieval-augmented generation (RAG) enhanced large language model (LLM), grounded in current EAU and AUA guidelines, to assess its effectiveness in providing guideline-concordant PSA screening recommendations compared to junior clinicians. Methods A retrieval-augmented generation (RAG) pipeline was developed and used to process a series of 44 fictional case scenarios. Five junior clinicians were tasked to provide PSA testing recommendations for the same scenarios, in closed-book and open-book formats. Answers were compared for accuracy in a binomial fashion. Key Findings and Limitations The RAG-LLM tool provided guideline-concordant recommendations in 95.5% of case scenarios, compared to junior clinicians, who were correct in 62.3% of scenarios in a closed-book format, and 74.1% of scenarios in an open book format. The difference was statistically significant for both closed-book ( p  < 0.001) and open-book ( p  < 0.001) formats. Conclusions and Clinical Implications Use of RAG techniques allows LLMs to integrate complex guidelines into day-to-day medical decision-making. RAG-LLM tools in Urology have the capability to enhance clinical decision-making by providing guideline-concordant recommendations for PSA testing, potentially improving the consistency of healthcare delivery, reducing cognitive load on clinicians, and reducing unnecessary investigations and costs.

Article activity feed