Hybrid Deep-CNN and Bi-LSTM Model with Attention Mechanism for Enhanced ECG-Based Heart Disease Diagnosis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
According to the World Health Organization (WHO), 17.9 million people die yearly from cardiovascular Diseases (CVDs), including heart attacks. Cardiovascular diseases, including heart attack, kill 32% of people globally. Current approaches struggle with electrocardiogram (ECG) signal variability, causing diagnosing errors. The adoption of automated and accurate models for heart disease detection is lacking since conventional methods rely on human analysis, which is time-consuming and error-prone. This work covers the crucial topic of heart disease diagnosis, especially ECG data analysis for cardiovascular disease detection. The integration of the Deep-Convolutional Neural Network (Deep-CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM) model with an Attention Mechanism enhances the accuracy and reliability of heart disease categorisation. The Deep-CNN component efficiently extracts features from capture spatial linkages, while the Bi-LSTM layers handle temporal dependencies to identify patient health patterns over time. The model is evaluated on 303 patient records with 14 clinical characteristics from the University of California, Irvine (UCI) Cleveland Heart Disease dataset. The suggested technique has 97.23% accuracy, 97.72% recall, precision, and 96.90% F1 score. These findings show that the proposed architecture improves diagnostic performance more than boosting ensemble approaches and hybrid models.