Deterministic steady-state subradiance within a single-excitation basis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Subradiance shows promising applications in quantum information, yet its realization remains more challenging than superradiance due to the need to suppress various decay channels. This study introduces a state space within a single-excitation basis with perfect subradiance and genuine multipartite quantum entanglement resources for the all-to-all case. Utilizing the quantum jump operator method, we also provide an analytical derivation of the system's steady final state for any single-excitation initial state. Additionally, we determine the approximate final state in the quasi-all-to-all coupling scenario. As an illustrative example, we evaluate the coupling and dynamical properties of emitters in a photonic crystal slab possessing an ultra-high quality bound state in the continuum, thereby validating the efficacy of our theoretical approach. This theoretical framework facilitates the analytical prediction of dynamics for long-lived multipartite entanglement while elucidating a pathway toward realizing autonomous subradiance in atomic systems.