The Histone Demethylase LSD1/ZNF217/CoREST Complex is a Major Restriction Factor of Epstein-Barr Virus Lytic Reactivation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Epstein-Barr virus (EBV) contributes to ~1.5% of human cancers, including lymphomas, gastric and nasopharyngeal carcinomas. In most of these, nearly 80 viral lytic genes are silenced by incompletely understood epigenetic mechanisms, precluding use of antiviral agents such as ganciclovir to treat the 200,000 EBV-associated cancers/year. To identify host factors critical for EBV latency, we performed a human genome-wide CRISPR-Cas9 screen in Burkitt B-cells. Top hits included the lysine-specific histone demethylase LSD1 and its co-repressors ZNF217 and CoREST. LSD1 removes histone 3 lysine 4 (H3K4) and histone 3 lysine 9 (H3K9) methylation marks to downmodulate chromatin activation. LSD1, ZNF217 or CoREST knockout triggered EBV reactivation, as did a LSD1 small molecule antagonist, whose effects were additive with histone deacetylase inhibition. LSD1 blockade reactivated EBV in Burkitt lymphoma, gastric carcinoma and nasopharyngeal carcinoma models, sensitized cells to ganciclovir cytotoxicity and induced EBV reactivation in murine xenografts. ZNF217 and LSD1 co-occupied the EBV immediate early gene BZLF1 promoter, which drives B-cell lytic cycle, as well as to the oriLyt enhancer regions recently implicated in EBV reactivation. LSD1 depletion increased levels of activating histone 3 lysine 4 (H3K4) methylation but not repressive histone lysine 9 methylation marks at BZLF1 and oriLyt and induced their interaction by long-range DNA looping. An orthogonal CRISPR screen highlighted a key H3K4 methyltransferase KMT2D role in driving EBV reactivation. Our results highlight H3K4 methylation as a major EBV lytic switch regulator and suggest novel therapeutic approaches.

Article activity feed